A Multi-Convolutional Autoencoder Approach to Multivariate Geochemical Anomaly Recognition

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local multivariate outliers as geochemical anomaly halos indicators, a case study: Hamich area, Southern Khorasan, Iran

Anomaly recognition has always been a prominent subject in preliminary geochemical explorations. Among the regional geochemical data processing, there are a range of statistical and data mining techniques as well as different mapping methods, which serve as presentations of the outputs. The outlier’s values are of interest in the investigations where data are gathered under controlled condition...

متن کامل

A Convolutional Autoencoder for Multi-Subject fMRI Data Aggregation

Finding the most effective way to aggregate multi-subject fMRI data is a long-standing and challenging problem. It is of increasing interest in contemporary fMRI studies of human cognition due to the scarcity of data per subject and the variability of brain anatomy and functional response across subjects. Recent work on latent factor models shows promising results in this task but this approach...

متن کامل

Structured Sparse Convolutional Autoencoder

This paper aims to improve the feature learning in Convolutional Networks (Convnet) by capturing the structure of objects. A new sparsity function is imposed on the extracted featuremap to capture the structure and shape of the learned object, extracting interpretable features to improve the prediction performance. The proposed algorithm is based on organizing the activation within and across f...

متن کامل

CRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran

Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomal...

متن کامل

local multivariate outliers as geochemical anomaly halos indicators, a case study: hamich area, southern khorasan, iran

anomaly recognition has always been a prominent subject in preliminary geochemical explorations. among the regional geochemical data processing, there are a range of statistical and data mining techniques as well as different mapping methods, which serve as presentations of the outputs. the outlier’s values are of interest in the investigations where data are gathered under controlled condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Minerals

سال: 2019

ISSN: 2075-163X

DOI: 10.3390/min9050270